
CEX – The Standard v2.4.0
Amendments since the previous version (v2.1)

Amendments to the previous version (v2.2)

Amendments to the previous version (v2.3)

1. Polymorphism was re-introduced (v2.1.0):

To support the Type::from(...) feature.

This would also support multiple ways to Type::make(...) a struct.

1. Introduction of templating with caveats (v2.2.0):

Introduced Explicit template specialization as an allowed feature.

This comes with the caveat of NO header function definitions.
Banned Implicit templates and Header function definitions.

The motive for this is simple: terrible compile times and the blasphemy of writing
source code in headers.

Added the free special method.
Exists as the associated method equivalent of the destructor.

Some structs allocate / open / initialize things which need to be deallocated /
closed / uninitialized.

2. Tighter usage of using directives and namespace aliasing (v2.2.1):

To avoid polluting header files, using directives must be used inside of source
files (never header files).
Other standards also agree that using namespace should never be used.

Namespace aliasing (by namespace X = std::whatever) is OK in source files.

1. Introduced guidelines for compile flags during development (v2.3.0):

Half of the battle is getting the compiler on your side – these are just starter
guidelines.

Amendments to the previous version (v.2.4)

Motive
C++ is a powerful tool. Some may argue too powerful. Constraints in a setting of
abundance can prevent mind-splintering and inconsistent paradigms.

CEX (or C-Extended) aims to be a C++ subset in between C and C++ which takes
advantage of existing C++ compilers, community and libraries while providing
enough stylistic/implementation restrictions for an "idiomatic approach" to be
meaningful.

Values

Caveats

2. Standard updating automation introduced (v2.3.1).

3. Formatting fix (error in the markdown) (v2.3.2).

4. Added copy as a special function (v2.3.3).

1. Added a reference to the Google C++ Style Guide for header naming and
include conventions (there are probably more to come in the future).

Explicitness,

Consistency,
Transparency,

Human readability,

Bottom-up design,

CEX is non-OOP as is conventionally understood (no inheritance,
polymorphism).

Constructors/destructors are also not used in the conventional sense (see
make).

No 'class' keyword (yes structs are technically the same – more on this later).
No getter/setter mentality. Struct members are accessed directly.

Value-initialized structs must be complete (else see default).

Permitted Features

Disallowed Features/Keywords

Recommended Alternatives

Adapting to a C++ World

Structs,

Namespaces,

Polymorphism (v2.1.0),
Methods (member/static),

Explicit template specialization (v2.2.0),
Operator overloads (<< , == , >> , etc),
Struct member and associated (static) functions,

Classes,

Exceptions,
Getters/setters,

Virtual methods,

Default arguments,
Constructors/Destructors,

Implicit templates (v2.2.0)
Header function definitions (v2.2.0)
Polymorphism (one name, one function) (v2.1.0),

Structs,

Return values,
Struct member access,

Composition and templates,

See std::optional ,

Use make / free ,
Use Explicit template specialization,

Use Explicit template specialization with source function definitions,

It must be said that many of CEX's idioms are fundamentally incompatible with much
of the existing C++ codebases out in the world. This must be reconciled by:

Compile Flags
Half of the battle is configuring the compiler to be on your side.

The following compiler/linker flags are required for development. I don't really care
what you do for production:

Note on previous C++ editions: Special projects may have special use cases. If
you know what you're doing this is fine, but it may require some creative flexibility to
adhere to the standard (especially parts which may rely on newer language
features).

Though there aren't many, it is something to consider. If it doesn't matter to you, use
the newest one by default.

Naming
Special Methods
There are a list of reserved method names for structs which perform generally similar
behaviours which can be intuitively reused across different types.

Namely, make , from , to , preset , copy and free .

1. CEX being a personal/organizational choice,

2. By design, working within the C++ ecosystem unlocks vast resources,

3. All other C++ libraries/codebases will work in CEX projects if included as
intended,

4. When preferred or absolutely necessary, incompatible features/implementations
can be wrapped within a CEX compliant API.

CXXFLAGS=-std=c++20 -Wall -pedantic -Wextra -Werror
LDFALGS=-fsanitize=address

As of (v2.1.0), polymorphism is supported. As a result, structs can be made from a
variety of different types and by extension made into a bunch as well.

Rationale:

Examples

make – reserved for the generation of a blank or empty struct (NOT for default
values – see default),
from – reserved for type conversions from another type,
to – reserved for type conversions to another type (usually of an external or
standard library),
preset – similar to make but initializes the struct members to a set of default
values rather than 0-values (or the equivalent thereof).

copy – returns an independent copy of the struct and its contents. In case of
dynamic content/members, perform the appropriate allocations/copying.
free – the opposite of make – if anything was initialized / dynamically
allocated / opened and needs to be de-initialized / deallocated / closed, this is
the place.

struct Fahrenheit {
float temp;

static Fahrenheit make(void);
static Fahrenheit from(Celcius& t);
static Fahrenheit preset(void);

// Primary template for `to()`
template<class T>
T to(void);

// Explicit specialization for T=Celsius
template<>
Celsius to<Celsius>(void);
...

}

struct Celsius {

float temp;

static Celsius make(void);
static Celsius from(Fahrenheit& t);
static Celsius preset(void);

// Primary template for `to()`
template<class T>
T to(void);

// Explicit specialization for T=Fahrenheit
template<>
Fahrenheit to<Fahrenheit>(void);
...

}

Fahrenheit Fahrenheit::make() {
return Fahrenheit {

.temp = 0,
};

}

Fahrenheit Fahrenheit::from(Celsius& t) {
return Fahrenheit {

.temp = t.temp * 9 / 5 + 32,
};

}

Fahrenheit Fahrenheit::preset(void) {
return Fahrenheit {

.temp = 212.0f,
}

}

template<>
Celsius Fahrenheit::to<Celsius>() {

return (this->temp - 32) * 5 / 9;
}

Celsius Celsius::make(void) {
return Celsius {

File extensions
All CEX projects must use the .cpp file extension for source files and the .hpp file
extension for header files.

Rationale: Although the .c++ and .C extensions are disqualified by default due to
special characters or filesystem indifference to capitalization, .cxx and .cc were
considered to be less popular than .cpp . In the spirit of setting a consistent
standard, the most common extension was the chosen one.

Namespaces
All namespaces must be named with lower-case and underscore-separated names
(no upper/lower camel case) and match the name of the header/source file is
encapsulates.

Example:

.temp = 0,
};

}

Celsius Celsius::from(Fahrenheit& t) {
return Celsius {

.temp = (t.temp - 32) * 5 / 9,
};

}

Celsius Celsius::preset() {
return Celsius {

.temp = 100.0,
};

}

template<>
Fahrenheit Celsius::to<Fahrenheit>() {

return (this->temp * 9 / 5) + 32;
}

Rationale: Exposing code modules or source files to the global scope of symbols
increases the risk of collisions to no benefit when done correctly.

Quick rules for namespaces

Informal module system
Matching the namespace name with the header/source combo informally introduces
the concept of modules in the build scheme. Although modules are officially being

// project.hpp
namespace project {

void act() { ... }
}

// project.cpp
void project::act() { ... }

Never using namespace anywhere, ever.

All using directives must go in source files.
Namespaces can be aliased (NOT using namespace) in source files
(minimize).

// project.hpp
using std::whatever; // NO
using namespace std; // NEVER
...
namespace project {

struct Project { ... };
}

// project.cpp
using std::whatever; // Yes
using namespace std; // STILL NO
...
using project::Project; // Yes
...
namespace fs = std::filesystem; // OK

streamlined into newer C++ standards, it's hardly catching on or working

An example project structure could resemble the following:

In which each header/source pair are implicitly glued as modules by the namespace
convention.

Alternatively:

In both cases, namespace and filesystem layouts are used to group code in logical
modules as much as possible.

Multiple headers/sources in one module
In case multiple header/source files are wanted to share the same namespace, the
module must instead be created under it's own directory (project/) in this case and

inc
_ project.hpp
_ module1.hpp

src
_ project.cpp
_ module1.cpp

project
_ inc

_ project.hpp
_ src

_ project.cpp

module1
_ inc

_ module1.hpp
_ src

_ module1.cpp

https://source.com/

contain a separate src and inc directory in which all of the sub-sources and sub-
headers will be stored, respectively.

For example:

At which point the module2.hpp header would declare the module's matching
namespace and allow sub-sources and headers to complete the implementation
therein.

One could evaluate an expanded tree of this as:

Where,

inc
_ project.hpp
_ module1.hpp
_ module2

_ module2.hpp
_ inc
_ src

inc
_ project.hpp
_ module1.hpp
_ module2

_ module2.hpp
_ inc
| _ submodule1.hpp
| _ submodule2.hpp
_ src

_ submodule1.cpp
_ submodule2.cpp

// module2.hpp
namespace module2 {

namespace submodule1;
namespace submodule2;

Headers
Please see the Names and Order of Includes section of the Google C++ Style Guide
https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes.

Structs
Remember there are no class declarations.

Structs must be named in the upper camel case format, namely prevent name
collisions with parent namespaces which could have good reason to match (a
project namespace containing a Project struct).

Example:

Rationale: The default accessibility is public and structs are typically thought of
passive data carriers. This encourages the model of associated functions and
transparent data types as opposed to the tightly encapsulated getter/setter model
typically associated to classes.

Inheritance vs Composition

}

// subheader1.hpp

// subsource1.cpp

// project.hpp
namespace project {

struct Project { ... }
}

// project.cpp
using project::Project;

https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes

Under long a chain of inheritance (entity, animal, mammal, dog, pitbull, etc.), any
changes in the parent types have immediate back-propagating consequences
throughout the codebase.

These changes need not be breaking – a monolithic type hierarchy will inevitably
impose greater leverage on parent types such that minor changes have greater and
greater impact on the rest of the code.

To make matters worse, standard library and otherwise large/complex objects are
strongly discouraged from being inherited to expand functionality. Thus, alternatives
and workarounds are needed depending on the types involved (subject to developer
preference).

Instead, lateral type conversions (to and from) mixed with composition/wrappers
are encouraged to minimize (albeit not eliminate) monolithic type hierarchies within
code.

Rationale: Prevents back-propagated changes to entire codebases and monolithic
type dependency hierarchies. Also encourages lateral type conversions.

Using Directives
When there are no collisions with other dependencies, apply using directives to
structs/objects by default.

Example:

// project.hpp
namespace project {

struct Project {
void act(void);

}
}

// project.cpp
using project::Project;

void Project::act() { ... }

Long chains of scope (e.g.: util::rf::Reader) which may pose confusion or name
collisions with another namespace (e.g.: util::io::Reader), it is considered
acceptable to alias namespaces to the nearest heterogenous parent (NOT using
the namespace, ever).

Example (needs to be redone – I don't advocate namespaces within namespaces):

// util.hpp
namespace util {

namespace io {
struct Reader { ... }

}

namespace rf {
struct Reader { ... }

}
}

// main.cpp
namespace io = util::io;
namespace rf = util::rf;

int main(void) {
io::Reader a;
rf::Reader b;
...
return 0;

}

